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1 Introduction

In the previous two deliverables I reported two major achievements of the project: a general
semi-formal theory of artefact and a formal theory of documents. This deliverable is aimed
to unify these two views and to develop the further on. The first two section summarises tha
main results from the previous deliverables. Section 3 extends the general theory of artefact to
caputer the engineering notions of behaviour and function. Section 4 shows how to incorporate
the theory of documents into the broad picture provided by the theory of artefacts. The last
section is devoted to evaluation of the project outcomes and suggestions for further work.

2 General theory of artefacts

2.1 Formal tools

The general theory of artefacts uses two formal tools: the theory of consequence operation and
the theory of states of affairs and objects.

Let LA be a language to speak about artefacts. The consequence operation C : ℘(LA) →
℘(LA) satisfies the following axioms:

(i) X ⊆ C(X), (1)
(ii) X ⊆ Y → C(X) ⊆ C(Y ),

(iii) C(C(X)) ⊆ C(X),
(iv) ϕ ∈ X → ∃Y ⊆ X[Y is finite ∧ ϕ ∈ C(Y )].

The theory of states of affairs and objects is based on two primitive (i.e. undefined) notions:
’Occ(x, y)’ and ”x 6 y”. The former means that an object x occurs in a state of affairs y and
the latter means that a state of affairs x is part of a state of affairs y. The theory is defined by
the following definitions and axioms:

(i) Obj(x) ≡ ∃y Occ(x, y), (2)
(ii) Soa(x) ≡ ∃y Occ(y, x).

Obj(x) ≡ ¬Soa(x). (3)

x 6 y → Soa(x) ∧ Soa(y). (4)

Soa(x) → x 6 y. (5)

x 6 y ∧ y 6 x→ x = y. (6)

x 6 y ∧ y 6 z → x 6 z. (7)

x 6 y → ∀z [Occ(z, x) → Occ(z, y)]. (8)

2.2 Theory

Artefacts are entities produced on purpose. We produce artefacts in order to achieve by means of
them some aims we find important. We produce them on the ground of their designs, which are
supposed to make our production more efficient. We produce artefacts and construct their designs
referring to some background knowledge relevant for this kind of artefacts. This knowledge is
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supposed to guarantee that artefacts help us to achieve the aims for which they were produced,
or at least it is supposed to make it more probable that we achieve those aims. We may achieve
those aims if we follow the instructions of use determined by artefacts designs and the respective
background knowledge. Subsequently, any artefact should be characterised with respect to four
dimensions: teleological (i.e. purposes), intentional (i.e. design), epistemic (i.e. background
knowledge), and operative (i.e. instructions of use).

Teleological dimension I argued that the category of artefact purposes should be relativised
to a community that imposes these purposes. Purpose(x, y, z) ⊆ SA means that a state of affairs
x is ascribed by a community z as a purpose of an artefact x. A set Purpose(x, y) will contain
any sentence that represents a purpose of an artefact x in a community y. Since it turned out
that artefacts are social entities, I will represent them by means of a binary predicate ”Art”:
Art(x, y) means that an object x is an artefact in a community y. Below I present the axioms
that determine the categories of arguments of Purpose and Art (9 and 31) and secure that any
artefact is endowed with at least one purpose (32 and 33).

Art(x, y) → Obj(x) ∧Obj(y). (9)

Purpose(x, y, z) → Soa(x) ∧Art(y) ∧Obj(z). (10)

Art(x, y) → ∃z Purpose(z, x, y). (11)

Art(x, y) → Purpose(x, y) 6= ∅. (12)

Intentional dimension I argued that any artefact is related to some design that determines
its characteristic features. I discriminated between engineering specifications, which are material
objects in which designs are ”encoded”, from design in the proper sense of the word. I classified
the former to the philosophical category of intentional states of affairs. I show what it means that
design represents artefact. I also argued at some length that at least some arefacts are related
to more than one design, different designs related to one artefacts being ordered with respect to
their specificity.

The resulting theory of artefact design may be rendered in the first-order language. Let
”design(x, y)” means that x is a design of an artefact y.

design(x, y) → Soa(x) ∧Obj(y). (13)

Artefact designs may be ordered with respect to their specificity. I will identify the relation of
being less specific with the relation <� {x : ∃y design(x, y)}. i.e the relation < restricted to the
set of artefact designs. It is obvious that every artefact has the most specific design (14), which
is the design according to which the artefact is manufactured. If we agree that some artefacts
have also less specific design representations, we should acknowledge the existence of the least
specific representation (15). In order to support this claim let me observe that any artefact
design consists of finitely many elements, i.e. of finitely many states of affairs, as a product of an
intentional agent (or a finite group of intentional agents) with strictly limited representational
capabilities. This entails that any artefact has a (possibly non-unique) <-minimal design. Since
all these minimal designs represent one artefact, they have something in common, i.e. the set
of states of affairs which are parts of all minimal designs is not empty. This common core is
represented here by the notion of least specific design.

design(x, y) ≡ design(x, y) ∧ ∀z[design(z, y) → z ≤ x]. (14)

design0(x, y) ≡ design(x, y) ∧ ∀z[design(z, y) → x ≤ z]. (15)
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Axiom 16 states that every artefact has the most and the least specific design.

Art(x) → ∃y∃z [design0(y, x) ∧ design(z, x)]. (16)

Definitions 14 and 15, and axiom 16 entail that for any artefact x, the most and the least
specific design of x are unique. I will denote them by, respectively, ”Design(x)” and ”design0(x)”.
The former will be called the full design of x; the latter will be called the minimal design of x.

A set design(x, y) ⊆ LA will contain all sentences representing a design x of an artefact y.
Subsequently,

design(x) := {y : design(y, x)}. (17)

design0(x) :=
⋃
{design(x, y) : design0(x, y)}. (18)

Design(x) :=
⋃
{Design(x, y) : Design(x, y)}. (19)

I introduced a number of constraints which are to exclude the most obvious cases of irrational
designs.

Occ(x, design(y)) ∧Art(x) → design0(x) ≤ design(y). (20)

design(x, y) → ¬Occ(y, x). (21)

design0(x) < design(y) ∧ design0(y) < design(x) → x = y. (22)

design(x, y1) ∧ design(x, y2) → y1 = y2. (23)

Occ(x, y) ∧ design0(z, x) → z ≤ y. (24)

Design(x1) = Design(x2) → ∀z [Purpose(z, x1, y) ≡ Purpose(z, x2, y)]. (25)

Design(x1) = Design(x2) → Purpose(x1, y) = Purpose(x2, y). (26)

Epistemic dimension The third element of my conceptual model of artefacts is background
knowledge. When Smith designs some artefact, her designing is not a chaotic sequence of inde-
pendent actions. Her designing forms a relatively compact structure of actions linked together
by her conceptual decisions based on some background knowledge. The information she refers
to does not determine her action exhaustively, but the more influential impact it exerts, the less
accidental the resulting design turns out to be. Similarly, when Brown produces the artefact
designed by Smith, Brown is guided by information from some source of information. The sum
of information from both sources will be called the background knowledge relevant for a given
artefact. The background knowledge relevant for an artefact x contains not only general theo-
rems about the nature of objects of the same kind as x, but also practical rules of thumb relevant
for the production of x. The majority of artefacts we use are designed and manufactured on the
ground of vague psychological and sociological observations concerning our desires, fears, pref-
erences, beliefs, etc., but we may generically determine the content of the relevant background
knowledge by using labels: mathematics, quantum chemistry, physiology of hearing, etc.

I will represent the background knowledge relevant for an artefact x by a set Knowledge(x) of
sentences from LA.

Art(x, y) → Knowledge(x) 6= ∅. (27)

It seems plausible to assume that the background knowledge is a theory with respect to the
consequence operation C. I define an auxiliary extension of C:

CK(x) := C(X ∪ Knowledge(x)). (28)
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I stipulated that
CK(x)(Purpose(x, y) ∪Design(x)) 6= LA. (29)

The background knowledge relevant for an artefact x is determined uniquely by the full design
of x.

Design(x1) = Design(x2) → Knowledge(x1) = Knowledge(x2). (30)

2.3 Operative dimension

The last element of my conceptual model is instructions of use. As in the case of designs,
I distinguish a technological instruction of use from a philosophical instruction of use. The
former is usually a sentence in the imperative mood, the latter is the ontic representation of
the declarative counterpart of that sentence. Use(x, y, z) ⊆ SA means that a state of affairs x
is ascribed by a community z as a purpose of an artefact x. A set Use(x, y) will contain any
sentence that represents a purpose of an artefact x in a community y. Here are the constraints
on the operative dimension I found necessary.

Use(x, y, z) → Soa(x) ∧Art(y) ∧Obj(z). (31)

Art(x, y) → ∃zUse(z, x, y). (32)

Art(x, y) → Use(x, y) 6= ∅. (33)

CK(x)(Use(x, y) ∪Purpose(x, y) ∪Design(x, y)) 6= LA. (34)

Design(x1) = Design(x2) → Use(x1) = Use(x2). (35)

Design(x1) = Design(x2) → Use(x1, y) = Use(x2, y). (36)

Purpose(x, y) ⊆ CK(x)(Design(x) ∪ Use(x, y)) \ CK(x)(∅). (37)

2.4 Definition of artefact

The four-dimensional ontology defines an artefact type as a quadruple consisting of its purposes,
design(s), background knowledge, and instructions of use. More precisely speaking,

Art(x, y) ≡ ∃z Purpose(z, x, y) ∧ ∃z design(z, x) ∧ Knowledge(x) 6= ∅ ∧ ∃z Use(z, x, y). (38)

Thus, an artefact type x within a community y will be represented as a quadruple
< Purpose(x, y), design(x),Knowledge(x),Use(x, y) >.

3 Behaviour and function in general theory of artefacts

3.1 Behaviour and function in engineering design

Any adequate engineering model of technical devices is bound to describe their behavioral and
functional characteristics. In engineering design there exist different, sometimes incompatible,
definitions of function and behaviour. Here is a short survey of the more influential accounts.1

1. FR (cf. [3])

• Behaviour
1The abbreviations I use here are explained in the first deliverable.
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– Definitions
Beh-i. The value(s), or relations between values, of state variables of
interest at a particular instant [. . . ]
Beh-ii. The value(s), or relations between values, of properties of an
object. This is closely related to sense (i) above. [. . . ] In such descriptions,
however, time is not explicitly mentioned. Thus, instead of thinking of
these behaviors as state variable values at any specific instant, it is more
perspicuous to think of them as relations between specified properties of
an object.
Beh-iii. The value(s) of state variables of interest over an interval of time.
[. . . ]
Beh-iv. The value(s) of state variable(s) specifically labeled output state
variables, either at an instant or over an interval of time. [. . . ]
Beh-v. The values of all the state variables in the object description,
either at an instant or over an interval of time. [. . . ]
Beh-vi. The causal rules that describe the values of the variables under
various conditions.
Let W be an object or an object configuration. A behavioral constraint
is any constraint on the behaviors in W (behaviors defined in any of the
senses defined earlier).

– Examples
Beh-i. [. . . ] How did the car behave? It rattled when I hit the curve.
How does the widget behave? The ratio of output to input voltage is
greater than one.
Beh-ii. [. . . ] For example, one might say, a lintel distributes the load to
the two sides. A window transmits the light from outside to inside the
house. A paperweight keeps the paper in place. [. . . ] object.
Beh-iii. [. . . ] What did you notice about the behavior? The BHP in-
creased for a while, but then started decreasing.
Beh-iv. [. . . ] The amplifier is behaving well – the output voltage is con-
stant.
Beh-v. [. . . ] A graph that plots all the variables over time is often called
the behavior graph.
Beh-vi. [. . . ] For example, one can say that Ohms Law, i.e., the causal
model in (3), describes the behavior of an electrical resistor.
Behavioral constraint i. P (B) is a behavioral constraint. Examples: The
value of output voltage is greater than 5 volts. The average value of the
variable P over time is 6.5 psi.
Behavioral constraint ii. If C,P (B) is a behavioral constraint. Example.
If the input voltage is above 5, the output voltage is be a sinusoid. If the
switch is pressed, the voltage goes up to 5 volts, and stays at that level.
Behavioral constraint iii. If C1, then P1(B); then if C2, then P2(B),
. . . .then if Cm, then ”Pm(B). Example: If switch is pressed, the ATM
flashes, insert card. If card inserted, ATM flashes, Enter ID. If ID is
entered, ATM. . .

• Function

– Definitions
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The mode of deployment of an object (device) D in some world W , rep-
resented as M(D,W ), is the specification of all the ways in causal in-
teractions between D and the entities in W are instantiated. Such a
specification might include one or more of the following:
(i) Structural relations between D and the entities in W .
(ii) Actions or action sequences by entities in W on D.
Let F be a set of behavioral constraints that an agent, say A, desires or
intends to be satisfied in some W . Let D be an object introduced into
W , in a mode of deployment M(D,W ). If D causes F to be satisfied in
W , we say that D has, or performs, the function F in W .
Let F be a set of behavioral constraints defined on, and satisfied by, an
object D. If F is intended or desired by an agent A, then D has function
F for A.

– Examples
ad i) Example: Locate part p of device D at location L1, electrically-
connect terminal t of D to terminal of electrical outlet, . . .
ad ii) Examples: 1. Push Switch of D. 2. Insert card into slot of D,
when insert card flashes on screen. (3). . .
For instance, an electrical battery may deliver the function, Provide a
voltage of B volts between external electrical terminals p1 and p2, un-
der the mode of deployment, p1, p2 electrically connected to electrical
terminals of battery.
Let FE be the following behavioral constraint: FE : Tv, the temperature of
a specific volume of space V ol in some world W > Tambient, the ambient
temperature. (That is, we wish to heat a given volume of air in a space.)
A device-centered functional description for heater, corresponding to the
above FE , is: FD: If Switch is closed, TS(t) > TS(t0), where TS is the
temperature of the surface and t0 is the initial time.

2. FBRL (cf. [13]

• Behaviour

– Definition
A behaviour is represented by relations among input and output objects.

– Examples
A shift of a kind of energy from one stream of energy to another stream.

• Function

– Definitions
A goal is an intended desirable state of a component of a system.
A function is the interpretation of behaviour under a goal.

– Examples
goal: temperature of the input coolant does not exceed 500 degrees centigrade
function: to make the temperature of a thing put on a cooking stove to be more
than a certain degree (a function of the cooking stove)

3. Kitamura and Mizoguchi (cf. [6])

• Behaviour
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– Definitions
An object is something that can be considered as what it goes through a device
from the input port to the output port during which it is processed by the device.
A behaviour is a change of an attribute value of an object from that at the input
port of a device to that at the output of the device.

– Examples
object: heat
behaviour: the increase of the temperature of steam occurred during it goes
through a superheater

• Function

– Definitions
A function of a device is a result of teleological interpretation of a behaviour
under an intended goal.

– Examples
to vaporize water
to heat water

4. FBS (cf. [16]

• Behaviour

– Definition
Behaviour is a change of states or a sequence of changes of states.

– Example
A is supporting B.

• Function

– Definition
Function is a description of behaviour abstracted by human through recognition
of the behaviour in order to utilise it.

– Example
to support something for manufacturing

5. Pahl and Beitz (cf. [11])

• Flow

– Definition
A flow is a conversion of energy, material or information.

– Examples
flows: carpet tiles, electricity, torque

• Function

– Definition
A function is an input/output relation of a system whose purpose is to perform
a task.

– Examples
to reduce speed
to transfer torque
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3.2 Towards ontological understanding of behaviour and function

I submit that the engineering categories of behaviour and function may be modelled as states of
affairs, either static, e.g. that the window transmits the light from outside to inside the house,
or dynamic, e.g. that the BHP increased for a while, but then started decreasing. Functions are
construed then as those behaviours that are intentionally selected by designers. This modelling
solution has the following advantages:

• We obtain a broad picture in which purposes, behaviours, functions, and instructions of
use are unified within a well-established conceptual category.

• The category of state of affairs is broad enough to accommodate both the definitions from
Functional Representation approach ([3], [2]) and the definitions from Functional Modelling
([14], [5]).

• In this picture, behaviours and functions are construed as complex entities.

• If we align this solution to a sufficiently broad ontological taxonomy, we may obtain a
number of distinctions and relationships.

It is not the case that every state of affairs in which a given artefact occurs is its behaviour or
function because some states of affairs in which artefacts occurs are accidental to them. It seems
that only those states of affairs that are parts of the full design of an artefact may be classified
as the behaviours of that artefact. I do not claim however that any state of affairs from the full
design may be called a behaviour of that artefact.

One of the possible ways of making the distinction between behaviours and functions is to say
that a function of a device is such behaviour of this device which is intended by its designer(s) (cf.
[3]). It is claimed that when the designer chooses a behaviour with an intention of transforming
it into a function, he abstracts from or disregards some aspects of the behaviour (e.g. [7], p. 400;
[16], p. 183; [17], p. 340-341). For example, the function ”to make a sound” is abstracted from
the behaviour ”the oscillator collides with the boss repeatedly” ([16], p. 187). Due to the fact
that research in engineering design does not characterise this operation of abstraction in sufficient
detail, I have to stop this search for a definition of function at this, clearly unsatisfactory point:

• A behaviour of an artefact is a state of affairs from the full design of the artefact.

• A function of an artefact is a result of the operation of abstraction performed by the
designer(s) of the artefact.

Nonetheless, at this point we may use the above results to define the notion of functional
parthood.

3.3 First-order theory of functional parthood

It is obvious that some behaviours specified by the design of an artefact do not concern the
functions of the artefact. Still, it is equally obvious that for any rational design process, any
object mentioned in this design, e.g. a bolt, piston, etc., plays some function in the artefact;
otherwise, the object would be redundant and as such would not occur in a rational design. In
other words, even if a design mentions more than just artefact functions, each object mentioned
in the design performs some function in the artefact which is represented by this design.

This argument requires four comments. First, the argument is based on the distinction
between entities that are specified (or qualified) by a design, such as bolts, pistons, and capacitors,
and specifications (or qualifications), such as diameters, temperatures, etc. Fox example, when
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an engineer requires that the diameter of a bolt be 10 mm, then the bolt is the entity which
is thereby specified and the diameter is the corresponding specification. I assume that only
the former entities, which later will be called objects, are, so to speak, eligible candidates for
function bearers. Thus, it is the bolt, and not its diameter, of which we may say that it has a
function. The notion of object at stake is roughly equivalent to the notion of bearer of properties.
Nonetheless, having certain qualities as their properties, objects participate in processes, are
related by relations, etc.

Secondly, one should distinguish between the broad and the narrow notion of function. A
function in the broad sense is anything which is desired or intended by some agent (cf. [3], p.
172-177). If an engineer speaks about functions or functional requirements, he usually has in
mind this broad meaning (cf. [12], p. 166-167). A function in the narrow sense is a role which
something plays in some structure as opposed to a purpose of the structure construed as a whole.
Peter McLaughlin explains this distinction as follows:

In the case of the functions of whole artifacts the determination of their functions
or purposes is completely external. It lies in the actual intentions of the designer,
manufacturer, user, etc., however socially determined these intentions may in fact be.
[...] On the other hand, the functions of parts of an artificial system are in a sense
internal and somewhat more objective insofar as these functions are always relative
to their contribution to the capacities of the system of which they are part, and this
contribution is part of the causal structure of the material world. It is the implied
reference to the containing system [...] that distinguishes such (relative) functions
from purposes. We can plausibly distinguish between a knife that has a purpose [...]
and a gear that has a function within a machine [...]. ([10], p. 52)

The argument presupposes the narrow notion of function. The broad notion of function is the
”sum” of the narrow notion and the notion of purpose.

Still, and this is the third comment, the notion of function at stake is broad enough to include
the aesthetic and ergonomic functions. Thus, even if a decorative trim around your car does not
physically contributes to the overall function of being a means of transportation, still it performs
some function, which justifies the designer’s decision to fix the trim to the chassis.

Fourthly, it is worth to emphasise that the argument requires a relatively modest assumption
concerning the rationality of designing practice. I do not claim that any detail of an artefact
token performs some function because the theory espoused here is consistent with the claim that
some details of the artefact token are not specified by its design.2 Moreover, I do not deny that
some functions are redundant, in which case we may eliminate them from the respective designs.
Similarly, I do not deny that functions may be inconsistent, in which case performing one of
them inhibits performing the other. I just claim that if an engineer mentions some object in his
design, this means that he considers this object as performing some function in the artefact he
designs and that this opinion of his is, so to speak, ontologically reliable for the notions at stake
in the sense that the object actually performs some function.

This allows us to define the notion of functional parthood. Assuming that any object which
occurs in a design of an artefact is not redundant within this design, we may say that x performs
some function in y iff there is a state of affairs in which x occurs and which is part of the full
design of y.

Func(x, y) ≡ ∃z[Occ(x, z) ∧ z ≤ Design(y)]. (39)

2Subsequently, I do not commit to a principle which is called by D. Dennett a default assumption of reverse
engineering. According to Dennett, a reverse engineer must start his analysis with the assumption that any detail
of an artefact whose design he is to reconstruct is there for some reason, i.e. it performs some function in the
artefact [4], p. 212.
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The formal theory of functional parthood (FTFP) may be expressed in a first order language
(with identity) with three primitive binary predicates: ”Occ”, ”<”, and ”design”.

The solution to the effect that a theory of functional parthood is in fact a theory of design has
three advantages over other approaches. First, the notion of design is far better understood and
far less controversial than the notion of function. Being aware of the aforementioned problems
with an adequate definition of the latter notion, one may appreciate an approach in which the
notion of function is not taken for granted.

Secondly, in the logical properties of functional parthood are not simply assumed as axioms
but may be derived as theses. This fact is of some importance for those who esteem the epis-
temological value of the debates on the mereological principles. We are in a position to discuss
the controversies over the relation of functional parthood in a broad framework which makes
room for discovering the sources of disagreement. For instance, it can be shown that the relation
defined by 39 is irreflexive and asymmetric (40 and 41) but in general not transitive (42). Still,
we can show why or when the relation is transitive (43 and 44).

` FTFP ¬Func(x, x). (40)

Proof. Assume that for some x0, Func(x0, x0). Definition 39 entails that for some z0, Occ(x0, z0)
and z0 ≤ Design(x0). Consequently, Occ(x0, Design(x0)). Axiom 21 entails now that
¬Design(Design(x0), x0), which is inconsistent with the definitions of FTFP.

` FTFP Func(x, y) → ¬Func(y, x). (41)

Proof. Suppose that for some x0 and y0, Func(x0, y0) and
Func(y0, x0). The former entails (*) and the latter entails (**).
(*) ∃z[Occ(x0, z) ∧ z ≤ Design(y0)],
(**) ∃v[Occ(y0, v) ∧ v ≤ Design(x0)].
It follows from (*) that Occ(x0, Design(y0)). It follows from (**) that Art(x0). (*) and axiom
20 entail now (***):
(***) design0(x0) ≤ Design(y0).
Similarly, (****) follows from (**).
(****) design0(y0) ≤ Design(x0).
(***), (****), and axioms 22 and 23 entail that x0 = y0 what contradicts both assumptions of
the proof (cf. 40).

0 FTFPFunc(x, y) ∧ Func(y, z) → Func(x, z). (42)

Proof. Consider the following model of FTFP. The model consists of ten elements: 1, 2, 3, 4, 5,
A,B,C,D, and E.

1. Occ(1, A), Occ(1, C),

2. Occ(2, B), Occ(2, C), Occ(2, D), Occ(2, E),

3. Occ(3, C),

4. Occ(4, D), Occ(4, E), Occ(5, E),

5. A < C,

6. B < C,B < D,B < E,
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7. D < E,

8. design(A, 3),

9. design(B, 4), design(C, 4),

10. design(D, 5).

It is easy to verify that all axioms of FTFP are satisfied in this model. Moreover, for some
x, y, and, z if the formulas ”Func(x, y)” and ”Func(y, z)” are satisfied, then the formula ”Func(x, z)”
is not.

` FTFP ∀x design0(x) = Design(x) →
→ [Func(x, y) ∧ Func(y, z) → Func(x, z)]. (43)

Proof. Assume that for all x, design0(x) = Design(x). Now let Func(x, y) and Func(y, z). The
former entails (*) and the latter entails (**).
(*) ∃v1[Occ(x, v1) ∧ v1 ≤ Design(y)],
(**) ∃v2[Occ(y, v2) ∧ v2 ≤ Design(z)].
As in the proof of 41, (**) entails that design0(y) ≤ Design(z). Since design0(y) = Design(y),
(*) gives us that v1 ≤ Design(z). Consequently, we get (***):
(***) ∃v1[Occ(x, v1) ∧ v1 ≤ Design(z)],
This obviously completes the proof (cf. 39).

` FTFP ∀x, y [Func(x, y) → Design(x) ≤ Design(y)] →
→ [Func(x, y) ∧ Func(y, z) → Func(x, z)]. (44)

Proof. Assume that for all x and y, [Func(x, y) → Design(x) ≤ Design(y)]. Now let Func(x, y)
and Func(y, z). The former entails (*) and the latter entails (**).
(*) ∃v1[Occ(x, v1) ∧ v1 ≤ Design(y)],
(**) ∃v2[Occ(y, v2) ∧ v2 ≤ Design(z)].
Moreover, both assumptions entail that
(***) Design(y) ≤ Design(z).
(*) and (***) gives us that v1 ≤ Design(z). Consequently, as in the previous proof we get (****):
(****) ∃v1[Occ(x, v1) ∧ v1 ≤ Design(z)],

43 reveals one of the sufficient conditions for the transitivity of functional parthood: if each
artefact in a set X has exactly one design, then the relation of functional parthood is transitive
in X. 44 reveals another condition: if for any artefact from a set X, its full design contains the
full designs of all its functional parts, then the relation of functional parthood is transitive in
X. Although neither of these conditions is necessary for the transitivity, we may treat theses 43
and 44 as claims which reveal some sources of the non-transitivity of the relation at issue: the
multiplicity of designs of a single artefact and underdetermination of artefact designs in general.
In a similar way, one can discuss in FTFP other principles of the standard mereology, e.g. the
principle of extensionality.

The third advantage of FTFP over other approaches consists in the fact that FTFP does
not take for granted such crucial logical properties of functional parthood as transitivity or
extensionality, but relates them to the actual engineering designs. Thus, whether this relation is
transitive or extensional depends eventually on the way in which artefacts are designed.
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3.4 Taxonomy of artefact functions

Exploring the opportunity of getting acquainted with the DOLCE ontology, I will characterise
artefact functions in more detail. DOLCE (Descriptive Ontology for Linguistic and Cognitive
Engineering) (cf. [9]) is the first module of the WonderWeb Foundational Ontology Library. The
WonderWeb project is aimed at developing language architecture for representing ontologies in
the Semantic Web. Within this library DOLCE plays the role of a reference module to be adopted
as a starting point for comparing and elucidating the relationships with other modules in the
library.

The most characteristic feature of DOLCE is the fact that it is an axiomatic theory of
particulars, as opposed to universals. Roughly speaking, a universal (in another terminology:
type or kind) is an entity that is instantiated in a number of other entities, called particulars. For
example, a car model is (usually) instantiated in a number of particular cars. DOLCE provides
a taxonomy of particulars and sketches a net of relations between different types thereof by
means of more than 80 definitions and 40 axioms expressed in first-order logic. The figure below
illustrates the basic categories of particulars acknowledged by DOLCE.
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Figure 1: DOLCE basic categories from [9].

An endurant is defined as an entity whose all (essential) parts are present at any time at
which the entity is present. A perdurant is defined as an entity whose some parts are not present
at some time at which the entity is present. A shaft is an example of an endurant and a rotation
of the shaft is an example of a perdurant. A quality is an entity that inheres in another entity.
The weight of a shaft is an example of a quality. In what follows I will restrict the intended
domain of qualities to the so-called direct qualities, i.e. to such qualities that are not themselves
qualities of other qualities. An abstract entity is an entity that does not have any spatial or
temporal qualities and that is not a quality itself. In DOLCE we distinguish between qualities
and quales. The weight of a shaft is a quality of the shaft and the actual ”value” of this weight
is a quale. A quale is an abstract entity that is a part of a quality region. The colour quales, for
instance, compose the colour space.

The domain of endurants is related to the domain of perdurants by the primitive relation
of participation: an endurant participates in a perdurant (at a time interval). The domain of
qualities is related to the domain of carriers of qualities by the primitive relation of inherence: a
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quality inheres in a carrier of qualities, or equivalently, a carrier of qualities has a quality. The
domain of qualities is related to the domain of quales by the relation of having a value: a quality
has a value (in a time interval) which is a quale region. DOLCE advances the constraint to the
effect that the relation of inherence is atemporal. This means that a quality inheres in an entity
during the whole time interval in which the entity exists. In other words, an entity has a quality
always or never.

A physical endurant is an endurant that has some spatial qualities. A non-physical endurant
does not have any spatial qualities. The category of physical endurants is divided into subcat-
egories by means of the notion of whole. Roughly speaking, an entity x is a whole under a
relation R iff x is a maximal (under the relation of mereological parthood) mereological sum
of entities that belong to the domain of R and are related to each other by R. An amount of
matter is a physical endurant that is not a whole. A physical object is a physical endurant that
is a whole under some unifying relation. Different kinds of physical objects are wholes under
different unifying relations.

If the (mereological) sum of any two perdurants of a kind ϕ is a perdurant of the kind ϕ,
then all perdurants of this kind are stative (or cumulative); otherwise they are eventive. If all
(mereological) parts of a stative perdurant of a kind ϕ are of the kind ϕ, then the perdurant is
a state; otherwise the perdurant is a process. If an eventive perdurant has no proper parts, then
it is called an achievement ; otherwise we call it an accomplishment. Conferences, ascents, and
performances are examples of accomplishments. Acts of reaching (e.g. a reaching of the summit
of K2), departures, and deaths are examples of achievements.

A quality is temporal if it inheres in a perdurant. One of the most crucial examples of
temporal qualities is a temporal location of a perdurant. A quality is physical if it inheres in a
physical endurant. One of the most crucial examples of physical qualities is a spatial location
of an endurant. Moreover, it seems that at least some topological qualities, e.g. topological
connectedness, also belong to this category although they are not explicitly mentioned in DOLCE.
A quality is abstract if it inheres in a non-physical endurant.

The DOLCE taxonomy leads to three basic types of states of affairs. If an entity has a
quality, then I will say that the respective state affairs (i.e. that the entity has the quality) is of
the inherence type. For instance, if a hammer has a weight (as one of its properties), then this
fact, i.e. that a hammer has a weight, is a state of affairs of the inherence type. If an endurant
participates in a perdurant, then the respective state affairs is of the participation type. If a
quality has a value that is a quale region, then I will say that the respective state affairs is of
the value type. All these types of states of affairs refer to particular states of affairs because all
entities that constitute any state of affairs are particulars. Still, when the engineer speaks about
functions, he usually has in mind not a particular state of affairs, but a type of states of affairs.
Thus, identifying functions with states of affairs, I claim that behaviour and functions are types
of states of affairs that may be represented as sets of particular states of affairs.

Now I will present a taxonomy of artefact functions based on DOLCE. The taxonomy develops
the so-called Reconciled Functional Basis approach. The Reconciled Functional Basis (RFB) is
one of the recent efforts towards establishing a standard taxonomy of artifact functions (see [14]
and [5]). RFB is the result of reconciliation of two previous taxonomies: the NIST taxonomy (cf.
[15]) and the older versions of Functional Basis developed in [8]. Each of these taxonomies is a
result of empirical generalisation of engineering specifications. RFB follows the classic paradigm
of Pahl and Beitz ([11]).

Because the RFB taxonomy of functions is flawed in a number of respects, I will refine it
with the help of my general theory of artefacts and DOLCE. Given that artifact functions are
states of affairs, the taxonomy of artifact functions should copy the aforementioned taxonomy
of states of affairs. However there is one important exception: due to the DOLCE notion of
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atemporal inherence, no state of affairs of the i-type is an artifact function. In DOLCE a quality
inheres in an entity either always or never. Thus, (on the first layer) I divide artifact functions
into participation functions (p-functions), i.e. states of affairs of the p-type, and value functions
(v-functions), i.e. states of affairs of the v-type. Metaphorically speaking, the former category
corresponds to dynamic artifact functions, while the latter corresponds to static functions. Then,
I divide both kinds of functions with respect to the kind of entities involved in the respective
states of affairs.

If a physical endurant participates in an achievement (respectively in an accomplishment,
state, or process), then the state of affairs (that consists in) that the endurant participates in
the achievement (accomplishment, state, or process) is a function of the Achieve (Accomplish,
Maintain, or Process) type, provided that this state of affairs is an artifact function at all. Thus,
there are exactly four kinds of p-functions.

Similarly, when a quality of spatial location (respectively, of energy, temporal location quality)
has a value that is a quale region, then the (v-type) state of affairs is a function of the Locate
(Energate, or Temporate) type. The category of topological connectedness represents a set of
qualities which are modelled in DOLCE in a peculiar way. Since no entity can lose any of its
qualities without ceasing to exist, therefore when an endurant becomes topologically disconnected
(without ceasing to exist), we model this fact saying that the endurants quality of topological
connectedness changes its value from Yes (or 1 or the value that corresponds to the fact that
something is topologically connected) to No (or 0 or the value that corresponds to the fact
that something is not topologically connected). In an analogous way, we model any fact to the
effect that some endurant is topologically connected (or disconnected). Now, when a quality of
topological connectedness has the value Yes, the respective (v-type) state of affairs is a function
of the Connect type provided that this state of affairs is an artifact function at all. If a quality
of topological connectedness has the value No, then the respective state of affairs is a function
of the Branch type. Thus, there are at least five kinds of v-functions: Locate, Connect, Branch,
Energate, and Temporate.

We may also divide the four categories of the p-type functions. To this, end I annotate every
state of affairs of the p-type with a pair of (possibly identical) v-type states of affairs: the initial
state of affairs and the terminal state of affairs. Both of these states of affairs involve the qualities
that are changed throughout the state of affairs of the p-type. Any quality of this kind will be
called a quality associated with the state of affairs (of the p-type). More precisely speaking, a
quality x of a kind ϕ will be said to be associated with a state of affairs y of a kind ψ iff for
any state of affairs y of the kind ψ, there is a quality x of the kind ϕ such that x is changed
throughout y. In general, there may be more than one quality associated with a given state of
affairs of the p-type. The initial state of affairs corresponds to the initial values of these qualities
and the terminal state of affairs corresponds to the terminal values. More precisely speaking, an
initial state of affairs associated with a state of affairs x of the p-type is a v-type state of affairs
that a quality associated with x has such a value that corresponds to the moment at which x
comes into being. Similarly, a terminal state of affairs associated with a p-type state of affairs x
is a v-type state of affairs that a quality associated with x has such a value that corresponds to
the moment at which x ceases to exists. Consider, for example, the state of affairs that a coffee
maker transports water from its reservoir through its heating chamber to the filter basket. The
quality associated with this state of affairs (of the p-type) is the spatial location of water. The
initial state of affairs (of the v-type) is that the spatial location of water has the quale of the
spatial location of the reservoir of the coffee maker. The terminal state of affairs (of the v-type)
is that the spatial location of water has the quale of the spatial location of the filter basket of
the coffee maker.

Since stative perdurants are cumulative, therefore for any stative perdurant, the initial state
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Figure 2: Taxonomy of artefact functions.

of affairs is identical with the terminal state of affairs; otherwise the mereological sum of two
perdurants of a certain kind would not be of this kind. For the same reason, for any eventive
perdurant, these states of affairs are different.

The results of this extension of the basic taxonomy of p-functions are presented in the fol-
lowing two tables.

Spatial location Topological connectedness Energy . . .
Achievement Reach Touch Split Switch . . .

Accomplishment Channel Attach Disjoin Load . . .
State Moor Join Cleave Conserve . . .

Process Move Bind Carve Energise . . .

Initial state of affairs: Terminal state of affairs: p-function
Top. connect. is present Top. connect. is present

Achievement Yes No Split
Achievement No Yes Touch

Accomplishment Yes No Disjoin
Accomplishment No Yes Attach

State Yes No Join
State No Yes Cleave

Process Yes No Bind
Process No Yes Carve

The final taxonomy of artefact functions is depicted in figure 2.
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4 Information objects as artefacts

In the previous deliverable I constructed a formal ontology of documents, which ontology is
expected to be a kind of paradigm for a future ontology of information objects of any kind. The
starting point to the former ontology was the theory of document genres by J. Yates and W.
Orlikowski.

I proposed to articulate the genre discourse by means of the following primitive notions:

1. two basic general ontological categories of endurants (ED) and perdurants (PD),

2. a specific relation of being a member of a community,

3. a complex general ontological category of situation-types (Sit),

4. a non-empty set Time of time parameters (temporal moments or regions),

5. a specific ontological category of agents and three specific relations between agents’ mental
attitudes and situation-types (here represented as a set Ment Sit),

6. two specific relations of being a part of, one of which is atemporal (6) and the other is
temporal (6t).

I distinguished between a document genre and a communication genre. The former is in-
stantiated by documents that are endurants; the latter is instantiated by documents that are
perdurants. Any document of a document genre was called a document in the strict sense; any
document of a communication genre will be called an act of communication or just a communi-
cation.

The genre was defined by its use and content.
The use element of a genre is to contain the recurrent situations in which the genre is referred

to and the purposes for which it is referred to. The former aspect will be represented here by
a set Trigger of situation-types. Trigger is to comprise all conditions that are necessary for
production of a document of a given genre. Any element of Trigger will be called a trigger both
for the genre and for the documents of this genre. Because all triggers are situation-types, any
document of a genre is associated with the same set of triggers. Similarly, the purpose aspect
will be represented by a set Purpose of situation-types. Each element of Purpose will be called
a purpose both of a given genre and of all documents of this genre.

The content of a genre consists of the medium and the language of the genre. The former is to
represent the medium and structure components of the form aspect from the theory of Yates and
Orlikowski. The latter is to represent the language component of theirs. The medium component
of my concept of genre contains a set of genre supports and a relation among characteristic parts
of these supports. A support for a genre is any document of this genre. Each support has its
own mereological structure, which in the case of endurants may change over time. I argued
that for each document from a given genre, there exists a set of its parts, which will be called
characteristic for this genre, such that a set of characteristic parts of any other document from
this genre is isomorphic to the former set. Any characteristic part of a document contributes to
the structural specificity of this document as long as this specificity is determined by the genre
to which this document belongs. I also argued that in the case of documents in the strict sense,
it seems obvious that only their essential parts may be characteristic.

The content of a genre was represented as a pair < Med,Lang >, where a set Med charac-
terises the medium aspect of the genre and a set Lang characterises its linguistic dimension.

The medium of a document genre was represented as a pair < Supp,6ch>, where
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1. Supp ⊆ ED is a non-empty set of supports of a given genre,

2. 6ch is a subset of 6es such that 6ch is a partial order and

∀x, y ∈ Supp < P6ch
(x),6ch> is isomorphic to < P6ch

(y),6ch>, (45)

where P6ch
(x) := {y ∈ ED : y 6ch x}.

The medium of a communication genre was represented as a pair
< Supp,6ch>, where

1. Supp ⊆ PD is a non-empty set of supports of a given genre,

2. 6ch is a non-empty subset of 6 such that 6ch is a partial order and condition 45 is satisfied,
now P6ch

(x) := {y ∈ PD : y 6ch x}

The language element of a document genre was modelled by a function Lang that maps a
set of sets of equiform endurants into a set of sets of situation-types, i.e. if X ⊆ ℘(ED), then
Lang : X → ℘(Sit). Subsequently, if X ∈ Lang(Y ), then this means that any endurant from
Y conveys a piece of information represented by X. The language element of a communication
will be modelled by a function Lang that maps a set of sets of equiform perdurants into a set of
sets of situation-types, i.e. if X ⊆ ℘(PD), then Lang : X → ℘(Sit).

A genre x from a community y was defined a pair < Use,Content > such that:

1. Use =< Trigger, Purpose >, where

(a) Trigger ⊆ Sit ∧ Trigger ∩Ment Sit 6= ∅,
(b) Purpose ⊆ Sit ∧ Purpose ∩Ment Sit 6= ∅,
(c) Ment Sit(y) ∩ (Trigger ∪ Purpose) 6= ∅,

2. Content =< Med,Lang >, where Med =< Supp,6ch>.

Assuming that situation-types are a kind of univeral states of affairs, if we compare this
definition to 38, we can notice that

• genre triggers correspond to the operative dimension of artefacts because the former de-
termine the conditions under which a given genre is evoked,

• for obvious reasons, genre purposes correspond to the teleological dimension,

• 6 corresponds to the intentional dimension because characteristic parts of documents are
fixed by documents’ designs,

• Lang corresponds both to the intentional and epistemic dimension because the way in
which documents are interpreted depends both on documents’ designs and on linguistic
competences of users of documents.

5 Evaluation and further work

The most important results of the work presented above include:

• a general theory of artefacts,

• a formal theory of documents,
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• a formal theory of functional parthood,

• a taxonomy of artefact functions.

The work presented in this deliverable concludes the project aimed to provide a formal ontol-
ogy of artefacts. This goal has been only partially achieved. The full formalisation is limited to
the theory of design and functional parthood and the theory of documents. The general ontology
of artefacts is in a semi-formal stage with a well-articulated conceptual basis. The missing parts
include a better developed theory of agents and agentive causality including social agents and
collaborative agency. Only when these theories are developed beyond their present embryonic
stage, a formal theory of artefacts will be attainable.

Actually, the first step towards this end has been made. During the project I managed to
build a logic of instrumental stit operator in which I defined the operator of agency: x sees to it
that ϕ with the help of y. I focused on actions in which agents employs various instruments in
order to achieve the desired outcomes. I explored the ontological structure of such actions and
the semantic features of sentences by means of which we refer to them. The logical framework
for this logico-philosophical enterprise is the theory of the so-called stit operator: . . . see to it
that . . . (cf. [1]). I modified the original theory so that we could represent those events in which
agents see to things with the help of physical objects. At the moment, however, the issue how
to incorporate this the logic into the conceptual schema of the theory of artefacts is open.
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